Microfluidics devices are tiny systems with microscopic channels that can be used for chemical or biomedical testing and research. In a potentially game-changing advance, MIT researchers have now incorporated microfluidics systems into individual fibers, making it possible to process much larger volumes of fluid, in more complex ways. In a sense, the advance opens up a new “macro” era of microfluidics.
Traditional microfluidics devices, developed and used extensively over the last couple of decades, are manufactured onto microchip-like structures and provide ways of mixing, separating, and testing fluids in microscopic volumes. Medical tests that only require a tiny droplet of blood, for example, often rely on microfluidics. But the diminutive scale of these devices also poses limitations; for example, they generally aren’t useful for procedures that need larger volumes of liquid to detect substances present in minute amounts.