Imaging deep inside biological tissue has long been a significant challenge. That is because light tends to be scattered by complex media such as biological tissue, bouncing around inside until it comes out again at a variety of different angles. This distorts the focus of optical microscopes, reducing both their resolution and imaging depth. Using light of a longer wavelength can help to avoid this scattering, but it also reduces imaging resolution.
Now, instead of attempting to avoid scattering, researchers at MIT have developed a technique to use the effect to their advantage. The new technique, which they describe in a paper published in the journal Science, allows them to use light scattering to improve imaging resolution by up to 10 times that of existing systems.
Indeed, while conventional microscopes are limited by what is known as the diffraction barrier, which prevents them focusing beyond a given resolution, the new technique allows imaging at “optical super-resolution,” or beyond this diffraction limit.